Performance Analysis and Optimization of Asynchronous

Circuits Produced by Martin Synthesis

Steven M. Burns

Computer Science Department
California Institute of Technology

Caltech-CS-TR-90-12

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1990 2. REPORT TYPE 00-00-1990 to 00-00-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Performance Analysis and Optimization of Asynchronous Cir cuits
Produced by Martin Synthesis

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Performance Analysis and Optimization of Asynchronous
Circuits Produced by Martin Synthesis!

Steven M. Burns

Computer Science Department
California Institute of Technology
Pasadena, CA 91125 USA

Abstract

We present a method for analyzing the timing performance of asyn-
chronous circuits, in particular, those derived by program transforma-
tion from concurrent programs using the synthesis approach devel-
oped by Martin. The analysis method produces a performance met-
ric (related to the time needed to perform an operation) in terms of
the primitive gate delays of the circuit. Because the gate delays are
functions of transistor sizes, the performance metric can be optimized
with respect to these sizes. For a large class of asynchronous circuits
— including those produced by Martin synthesis — these techniques
produce the global optimum of the performance metric. A CAD tool
has been implemented to perform this optimization.

1 Introduction

Performance analysis of a synchronous computer system is simplified by an
external clock that partitions the events in the system into discrete segments.
In asynchronous systems, no such quantization exists. Instead, the operation
of the system proceeds at a rate determined by: the speed of its individual
components, and sequencing of the operation of the components. Unlike the
synchronous case, the time needed to perform an asynchronous computa-
tion cannot be determined by merely counting the number of clock cycles
required and multiplying by the clock period. Instead, to determine the time
required to perform the computation as a whole, the times of those individual
components of the computation that must occur sequentially are summed.

'Presented at TAU ’90, the 1990 ACM International Workshop on Timing Issues in
the Specification and Synthesis of Digital Systems, August 14-17, 1990, Vancouver, BC,
Canada

"The techniques required to analyze asynchronous systems resemble those
used to determine the clock period of a synchronous system; that of summing
the delays along the longest path through the combinational logic connecting
adjacent latches. In the clocked case, the critical path has a clear beginning
and a clear end because all paths are broken by latches. No clear separation
is available in asynchronous systems. Analysis procedures must deal directly
with cyclic critical paths, and thus existing critical path analysis tools such
as CRYSTAL[9] cannot be easily applied to this problem.

This paper discusses a framework for determining the time needed to
perform computations using asynchronous systems, and applies especially to
repetitive computations. Previous work in the area of timed Petri nets [10, 5]
applies to this problem as well. The results we describe here are based on
event-rule systems, a different formalism that is more closely connected to
the methods we use to synthesize the asynchronous systems. Furthermore,
we use our formalism to model the performance of asynchronous circuits and
provide a method for optimizing such circuits for performance.

Martin ([6] and elsewhere) has developed a synthesis method whereby
asynchronous circuits are produced from concurrent program descriptions.
By applying a systematic series of semantics-preserving transformations, a
high-level description (CSP program) is refined, using the intermediate forms
of handshaking expansions and production rules, until a provably correct
asynchronous CMOS circuit is constructed.

At each stage of the synthesis procedure, a variety of transformations
can potentially be applied. In the automated compiler of [1], these choices
are made so that the same subcircuit template can be used to implement
each instance of the same CSP language construct. Instances of these small
templates are composed together to form a correct circuit implementing the
original CSP program. However, in order to produce high-performance cir-
cuits, these choices must be directed by performance concerns. We observed
this potential benefit of performance-directed transformations during the de-
sign of the Caltech Asynchronous Microprocessor[7]. The decisions of what
transformation to apply were based on performance goals and this accounts
for its high-performance.

Event-rule (ER) systems can be used at each stage of the synthesis proce-
dure to analyze the potential performance of the current refinement. Given a
trace of the execution of a complete, closed program (environment included),
an ER system can be generated from any of the intermediate forms: CSP

programs, handshaking expansions, production rules, or CMOS circuits. The
trace of execution is used to unroll each process that contains guarded com-
mands into a straight-line process. In the cases where the trace of execution
repeats, a repetitive ER system can be generated. The cycle period (the time
between repeated events) can be determined using the techniques explained
in Section 2.

These techniques provide an expression for the cycle period in terms of
maximums and sums of individual component delays. At the circuit level,
the component delays are functions of transistor widths and, as such, the
cycle period can be optimized with respect to these widths. Nonlinear op-
timization methods (such as those used in TILOS[3] and EPOXY][8]) can
be used to perform the optimization of this expression for the cycle period.
Our approach differs from those used for synchronous systems because we
optimize all critical paths simultaneously.

2 Event-Rule Systems

An event-rule (ER) system, is a pair (E, R), where:
E is a set of events, and

R is a set of rules defining the timed causal dependencies between the
events. Each r € R is written e = f, where

e € E is the source of r,

f € E is the target of v, and

a € [0,400) is the delay of r.

Neither E nor R need be finite. When R is infinite, we require that no event
is the target of an infinite number of rules. Sometimes it is convenient to
view (E, R) as a directed graph (multiple arcs and self-loops allowed); this
graph will be referred to as the constraint graph G. For a given (E, R), there
is a (possibly empty) set of functions T, that satisfies:

T is a subset of the functions from E to [0, +00) ;
t € T if and only if
t(f)>tle)+aforeveryers fe R . (1)

We call a function ¢ in the set T" a timing function of (E, R). Each t represents
a possible or consistent timing specification for the events of the system. If
the set 7" is empty, the constraints (1) cannot be satisfied by any such function
t. In this case, the (E, R) is called infeasible; otherwise, it is called feasible.

Example 2.1 Consider the (E, R) with:

E = {a,b,c}
R = {aBb,65 4,05 ¢}

This ER system is feasible if and only if o, = 0 and a3 = 0.

The smallest timing function denotes the earliest time at which the events
of E can execute. Any feasible ER system with cyclic constraints or zero delay
rules can be transformed into an equivalent one that satisfies the hypotheses
of Lemma 2.1.

Lemma 2.1 If (E, R) is feasible, the constraint graph G is acyclic, and
a > 0 for every rule in R, then there exists a unique function £ € T such
that for every t € T,

t(e) < t(e) for every e € E. (2)
We call { the timing simulation of (E, R).

Proof: We propose the following recursive definition for #:

iy —d 0 if {e|er> feR}=0
{(f) = { max{t(e) +a|er> f € R} otherwise ©)

Such a function is well-defined, because G is acyclic and thus there are no
circular dependencies between the events in E.

We show, by contradiction, that this ¢ satisfies (2). Pick a t such that the
set F' of events e that satisfy ¢(e) < f(e) is non-empty. Let f € F have the
smallest £(f) . Then for some e+ f € R ,

t(f) <i(f) =te) +a <tle) +a < H(¥f) .

The equality of the previous line follows by choosing e ¥ f as the rule that
achieves the maximum in (3). The inequality #(e) + a < t(e) + a follows,
since e ¢ F; that is, #(e) is strictly less than £(f). The last inequality holds
by (1). Thus, F is empty and £ satisfies (2). ¥

Example 2.2 The ER system defined by the constraint graph:

has the timing simulation:

i(a) = 0

ie) = 0

i(b) = max(ag, Qep)

i(e) = max(Cap, Qep) + Qe

i(d) = max(aap, @) + e + Cea

2.1 Repetitive Systems

ER systems of unbounded size constructed from finite circuits can be rep-
resented by a finite set of events that are repeated infinitely often. Let the
event set E' be generated from the finite set E' by

E=F xN.
The elements of the finite set R’ are quadruples:
(u,v,a,6) € R', where ' C E' x E' x [0,400) X Z,

which we will write as
(u,i—e) ¥ (v,1).

The set R is the set of all instantiations of the rules € R’ with i > max{0,¢}.
We define the collapsed constraint graph G' of (E', R') as the directed
graph with nodes from E' and arcs from R'.

Example 2.3 Consider the repetitive ER system constructed from a circuit con-

taining a single Muller C-element:

E' = {z1,y1,21,2l,yl,2]}
R = {(zli-1) 3 (21,9,
- (whi=1) = (1),
z (21,1) M (z1,4),
(21,1) o (y1,1),
(1, B (zl,9),
y who B (21,9,
(21,1) B (al,9),
(z1,7) o (yl,5)

}

The repeated events (those events generated from E’) represent the occurrence
of transitions of circuit variables. The event (z 1) represents the i** repetition
(or occurrence) of a transition from z = false to z = true. Similarly, (z |, 1)
represents the ¢** repetition of a transition from z = true to z = false. The
repeated rules correspond to dependencies introduced by the inverters and the
C-element that make up the circuit. We can represent the infinite sets E and R
graphically:

(z1,0) (zl,0)
Qg1 Q) Qg [2% Q gt
/ N / N\ /
(=1,0) Lo oGy
J N
(y1,0) (y1,0)

Notice that event (27,0) has no predecessors. In the timing simulation, #((z1,0))
is set to 0. (For ease of notation, #({z1,0)) will sometimes be written as (21,0).)
The entire timing simulation £, which can be constructed by inspection from the
constraint graph, is:

H(z1,4) = pi
i(z1,9) = ot + pi

iy1,9) = oy +pi

H(z1,9) = max(au,ay)+ay +pi
t(z],9) = max(auy,) +) + gy + pi
t(yl,i) = max(g, Gyp) + 0y + gy + pi

where p = max(a., ayp) + oy + max(oyy, ay) + az.

2.2 Linear Timing Functions

In the previous example, we saw that the timing simulation of a repetitive

ER system took on a simple form that is linear in the occurrence index i.

This is not the case for all repetitive ER systems. However, as we now show,

a linear timing function exists whenever the timing simulation exists, and the

“best” such function will be a good approximation of the timing simulation.
We call t € T a linear timing function of (E', R'), if

t(v,1) = x, + pyi for every v € E’ and i € N. (4)

Each z, and p, are independent of i. For each v € F', z,, and P are called,
respectively, the offset and cycle period of the repeated event v.

Because of the linear form of £, the timing function constraints, (1), re-
duce to linear inequalities in the offsets and cycle periods of the events.
All dependence on the occurrence index ¢ can be eliminated. For each rule
r = (u,i—¢€) > (v,1) € R', we have the infinite set of constraints:

t(v,4) > #(u,i —€) + a, for each i > max(0,¢)
Replacing t by its definition (4), we get

Ty +pvz 2 Ty +pu(z - 5) + o
Ty 2 Ty —Pu€+a+ (pu _pv)i .
The preceding equations can never be satisfied for all i when p, > Py. Thus,
the infinite set of constraints generated by r can be replaced by the two
inequalities,
Ty

Dy

Ty —pue +a , and (5)

2>
> Pu - (6)

From (6) we see that for a feasible solution to exist, a partial ordering
between the p,’s must be satisfied. If two nodes, u and v, are in the same
cycle of the collapsed constraint graph G, then p, must equal Dy. All events
in the same strongly connected component of G' have the same cycle period.
In the following, we consider only those repetitive ER systems in which G’ is

strongly connected, and p is used to denote the cycle period of every element
in F'.

2.3 Linear Programming

Among the possible linear timing functions, there are those that minimize
the cycle period p. The techniques of linear programming[4] can be used to
find such a minimum-period, linear timing function.

The constraints of a linear timing function, (5), are simple linear inequal-
ities in the z,’s and p. By ordering the sets E' and R’, we can construct a
linear program in matrix form:

min0Tz +17p = 2
Az+ep > a (7)
z,p 2 0

The matrix A’ is the edge-vertex incidence matrix of the collapsed constraint
graph G'. If row j of A’ represents the constraint r; = (u, i—€) ¥ (v,i) € R,
and column k of A’ represents the event u; € F', then

-1 fuy=u
!/ .
Ajp = 1 fu=vw

0 otherwise .

The jth elements of the (column) vectors ¢ and « are the scalar quantities &
and a of the constraint r;, respectively.

Example 2.4 Consider the repetitive ER system:

E' = {lo1,lit,ro1,7i1,lo),li],ro|, i 1}

R = {({lil,i-1) ¥ (of,i),
(rol,i—=1) ¥ (lo1,4),
(Ii1,4) s (lo],4),
(ri1,1) Y (rof,4),
(lo],1) Y (rof,d),
(ril,1) ' (rol,1),
(lo1,1) H@it,6),
(lo},4) ol],6),
(rol,i—1) V' (rif,s),
(rot,1) g (ril,2)

In this case, equation (7) becomes:

/1 0 0 0 0 -1 0 0\ (1) [o
1 0 0 0 0 0 -1 0|/my) 1 g
0 -1 0 0 1 0 0 0] zy 0 Ay
0 0 1 -1 0 0 0 0[] o 0 et
0 0 1 0 -1 0 0 0[] o 0 ret
000 0 0 0 0 1 -1|]|ag |T]0]|P2] ay

-1 1 0 0 0 0 0 0 221,‘1 0 am
0 0 0 0 -1 1 0 0| 0 an
0 0 0 1 0 0 -1 0|\ay)/ 1 it

\' 0 0-1 0 0 0 0 1) \o0/ \ay/

The duality theorem of Linear Programming relates the primal program
(7) to the dual program:

maxyla = w

T g1 T

y A < 0
yTE < 1T (8)

y 20

If both the primal and the dual programs have optimal solutions, then the
optimal value z of the primal equals the optimal value w of the dual. We
solve this dual program (8) in order to determine the cycle period.

2.4 Cycle Vectors of a Graph

A cycle of length £ in a directed graph, G = (V, £) (multiple edges and self-
loops allowed), is an ordered subset C = (g, ¢y, ... ,ce—1) of the edges & such
that target(cr—1) = source(c) for all0 < k < € and target(c,_,) = source(cy).
The cycle C can be represented by a cycle vector u, a {0, 1}-vector of length
|€], where u; = 1 if and only if the j* edge of £ is in the set C. For each
cycle vector u, uTA' = 07, where A’ is the edge-vertex incidence matrix of
the graph G. The following lemma relates the cycle vectors to an arbitrary
vector y satisfying yT A’ < 07.

Lemma 2.2 Let U;, 0 < ¢ < ¢ denote the cycle vectors of a graph with
edge-vertex incidence matrix A’. Then, if y > 0 is such that y7A4’ < o7,
there exist scalars 6; > 0, 0 < i < ¢ such that

y=00U0+01U1+...+0q_1U -1 - (9)

Proof: See [2] for complete proof. Follows by induction on the number of
cycles in the graph of A’. §

This lemma provides a straightforward means of determining the mini-
mum cycle period p. By enumerating every cycle in G, and computing the
delay around that cycle, we can find p.

Theorem 2.3 The minimum cycle period p, or equivalently, the optimal
value w of the dual program (8), is

A Ula

Ule

Proof: Let U be the cycle matrix constructed by concatenating the (col-
umn) cycle vectors Uy, Uy,...,U,—;. By construction, UTA4’ < 0 (actually
equality). By lemma 2.2, any y > 0 with y7A’ < 07 can be represented as

the product U©, where the vector © has non-negative elements. The dual
program (8) reduces to:

for all cycle vectors Uk} . (10)

z = max©0T(UTa)
oT(UTs) < 1
© >0
The dual of the reduced dual is easily solved:
z = minp (11)
UTelp > (UTa) (12)
p 20 (13)

The smallest scalar p, which satisfies the vector inequality (12) yields the
desired minimum cycle period. &

Example 2.5 The minimum cycle period of the previous example can be con-
structed as follows: The collapsed constraint graph G’ is:
Ii)
®Xiot =P o)
N
loT =% L1 24 o)

Qo —PT laroT

rol “I57 it 4 rot
X pol Qg

7

T3]

In the graphical representation, each constraint r is labeled with o, —e,.p. Summing
the delays along the three cycles through G,

Cy = (lOT,liT,lOl,’I’OT,T'il,’I’Ol),
N (lo1,li1,lo],li]) and
C; = (TOT,’I“il,’I‘Ol,’I"L’T),

yields:

Po = Qo + aup + Quop + Ot + Qi + Qg
21 Qg + o + Qo) + agyy
P2 = Qpq + Q| + Qo) + Uit

By Theorem 2.3, p = max(p,, p1, p2).

2.5 Approximating the Timing Simulation

We now show that a minimum-period linear timing function provides an
accurate approximation to the timing simulation.

Theorem 2.4 Let and £ be a minimum-period linear timing function and
the timing simulation, respectively, of a connected repetitive ER system:.
There exists a finite B such that for all u € E' and all i > 0

Sui = t(u,i) — t(u,i) < B .
Proof: By definition for each u and i

t(u,i) = x,+pi
f(u,z') = Ty +Ppi— Sy,

Each s,; is nonnegative because ¢ is the smallest timing function. For the
constraints generated from r = (u,i — &) > (v,4i) € R’, we define the non-
negative slack variables Z,; and Z,, thus transforming inequalities into equal-
ities:

Ty—pet+a+z = x, (14)
Ty +p(i—€) —Syieta+2,; = x,+pi— S (15)

By subtracting these equations and simplifying, we get
Zy — 21',1' = Sy — Suji—¢ - (16)

From Theorem 2.3, p¥,cc &r = L,ec @, for at least one cycle C. Adding
the constraints on ¢, (14), for each r € C, we see that

DT —PY &ty I EH=Y T, .
reC reC reC reC reC

Since along any cycle ¥,cc Ty, = Ypec Tv,, We have for all r € C,
Z. =0 .

By (16), su,i—e > 5, for alli > max(0,¢) and all u, v on cycle C. By summing
along the cycle C, we see that for each v € C and ¢ > 0

Suit > Sy Where i =1+ Y &, .
reC

Therefore, we can bound s, , for every u € C, by

uéC/\z"<Zsr}

/
B’ = max {su,i:
reC

For any event, h, not on cycle, C, we find a path, P, to this event from
an event g on C. Because G’ is strongly connected, such a path must exist
and be independent of i. Then, by summing (16) along that path, we get for
all 4,9 >0

Sgt + Z Zy 2 Shi
T7EP,
where i = i'+3,cp, .. But 3¢ p, Zr is independent of ¢; thus, sp; is bounded
by a quantity that does not increase with successive occurrences. Thus, every
sn; with b € C is bounded by B where

B > max{sh,,-

hgCAi< Zsr} , and

rePy

B > B'+max{ >z
r€P,

hgc}.l

3 Performance Optimization

Using the above analysis method, a performance metric (the minimum cycle
period p) can be expressed in terms of the primitive delays of an ER system.
If the ER system is modeling a CMOS circuit, these primitive delays are
determined by transistor widths. Adjusting the transistor widths affects
the performance metric, but the nature of the dependence is completely
encapsulated by the expression for the minimum cycle period. Minimizing
the expression for p in terms of the transistor widths yields an optimally
sized circuit.

3.1 Tau Model

|
|
a b_quwa : a b
N I N A
|
| C
|
|

L
ST Y e

“Z
Figure 1: Linear approximation of a CMOS pulldown.

A simple RC switch model is used to relate each individual delay «, to the
widths of circuit’s transistors (w’s). Each transistor is modeled as a switch
with a resistance inversely proportional to its width. The gate of a transistor
has a capacitance to ground proportional to its width. Source and drain
capacitances are also proportional to transistor widths. Thus, the delays

between a1 and z |, and b1 and z |, of the circuit shown in Figure 1 are
modeled as:

Qatzl = RiCi1 + (Rl + Rg)Cg

aszl = (R1 + R2)CZ
Ry = pfu
Ry = pfw,

C: = de(w1+w2)

02 = de(w2 + w3) + C’wiring + Kg(w4 + U)5) 3

where p is a constant that describes the differing per-unit-width strengths
of the n- and p-channel transistors, Ky, is the per-unit-width capacitance
contributed by the drain or source terminals, K, is the per-unit-width gate
capacitance and C'Wmng is the capacitance contributed by wiring. All capac-
itances are expressed in terms of transistor width and thus K, = 1. The
delays (a’s) are in units of 7, the time needed for a unit- W1dth n-channel
transistor to switch a unit-width load. (Thus, u, = 1, pp > 1.) The values
of Kq4s and Clyiring are not constant, but depend on the final circuit layout
that depends weakly on the transistor widths. This dependence is normally
small and is ignored in the optimization problem.

3.2 Convex Objective Function

Every a derived using this simple model (and also many more accurate ones)
is a posynomial functions (polynomlal with positive coefficients and positive
variables) of the transistor widths w’s, and thus a convex function of the
log w’s[4]. Because both the sum and the maximum of two convex functions
are convex functions, the resulting expression for p is a convex function of
the logw’s; and, thus, each minimum of p is global. The addition of convex
constraints, for example, to limit energy usage or to bound transistor sizes,
does not alter the unique minimum property.

We have implemented a program for solving the resulting nonlinear, non-
differentiable, convex optimization problems based on the subgradient tech-
niques described by Shor[11]. Table 1 lists the results of this program when
applied to a variety of circuits. The column 7y, denotes the number of
transistors in the circuit, and thus the number of free variables in the opti-
mization problem. The columns pyusized and Pgized sShow the cycle period in
units of 7 of the circuit before and after optimization. In the unsized case,
all transistors have equal sizes. The CPU column denotes the number of
CPU seconds needed to compute the optimum value on a SUN /Sparcstation
1. The performance metric of the sized circuit is generally 30 percent faster
than the unsized circuit. A direct implementation of the optimization al-
gorithm requires O(ntrans + Ncycleslmax) arithmetic operations per iteration,
where 7cycles 18 the number of cycles used to form the cycle period functlon
and .y is the maximum number of edges per cycle. A more sophisticated

implementation that does not require enumeration of all cycles is described
in [2] and requires only O(n2,) arithmetic operations per iteration. In
this case, the linear program for the cycle period is solved directly, at each
iteration, by a special-purpose algorithm.

4 Summary

We have demonstrated a method for determining the performance of circuits
described by event-rule systems. Furthermore, we have shown how to opti-
mally size transistors in such circuits. What we have not shown, due to lack
of space, is how to transform the specifications of asynchronous circuits that
we use for synthesis into ER systems. With the addition of these techniques,
we have a complete method combining synthesis and performance analysis.
The performance analysis can be done early and at each level of the synthe-
sis procedure and can be used to guide the synthesis of efficient circuits. A
complete description is given in [2].

5 Acknowledgments

I wish to thank Alain Martin, Pieter Hazewindus, Marcel Van der Goot,
Drazen Brokovic, Tony Lee, Jose Tierno and Mass Sivilotti for their com-
ments on this manuscript. The research described in this paper is sponsored
by an IBM Graduate Fellowship and by the Defense Advanced Research
Projects Agency, DARPA Order number 6202, monitored by the Office of
Naval Research under contract number N00014-87-K—0745.

| I Tltrans I Dunsized | Dsized I CPU (m

Three stage pipeline control 59 189 | 143 42
Ten stage pipeline control 192 189 | 151 190
Ten stage pipeline control* 192 189 | 151 95
Simple microprocessor control* | 285 646 | 430 369
" indicates results generated by the special-purpose algorithm

Table 1: Performance of optimization tool.

References

[1]

[2]

[3]

[4]

(5]

[6]

[7]

(8]

[10]

[11]

Burns, Steven M., and Martin, Alain J., “Syntax-directed Translation of
Concurrent Programs into Self-timed Circuits,” in J. Allen and F. Leighton
(eds), Fifth MIT Conference on Advanced Research in VLSI, pp. 35-50, MIT
Press, Cambridge, MA, 1988.

Burns, Steven M., Synthesis and Analysis of Efficient Asynchronous Clircuits,
Caltech PhD Thesis, 1990.

Fishburn, J.P., Dunlop, A.E., “TILOS: A Posynomial Programming Ap-
proach to Transistor Sizing,” IEEE ICCAD, pp. 326-328, Nov. 1985.

Franklin, Joel, Methods of Mathematical Economics, Springer-Verlag, Berlin,
1980.

Magott, Jan, “Performance Evaluation of Concurrent Systems Using Petri
Nets,” Information Processing Letters, 18, pp. 7-13, 1984.

Martin, Alain J., “Programming in VLSI: From Communicating Processes to
Delay-insensitive Circuits,” in C.A.R. Hoare (ed), UT Year of Programming
Institute on Concurrent Programming, Addison-Wesley, Reading, MA, 1989.

Martin, A.J., Burns, S.M., Lee, T.K., Borkovic, D. and Hazewindus, P.J.,
“The Design of an Asynchronous Microprocessor,” in C.L. Seitz (ed), Ad-
vanced Research in VLSI: Proceedings of the Decennial Caltech Conference
on VLSI, pp. 351-373, MIT Press, Cambridge, MA, 1989.

Obermeier, Fred W., An Open Architecture for Improving VLSI Circuit Per-
formance, UC Berkeley PhD Thesis, 1989.

Ousterhout, J.K., “A Switch-Level Timing Verifier for Digital MOS VLSI,”
IEEE Transactions on CAD, CAD-4(3), July 1985.

Ramamoorthy, C.V., and Ho, Gary S., “Performance Evaluation of Asyn-
chronous Concurrent Systems Using Petri Nets,” IEEE Transactions on Soft-
ware Engineering, SE-6(5), pp. 440-449, Sept. 1980.

Shor, N.Z., Minimization Methods for Non-Differentiable Functions, trans-
lated from Russian, Springer-Verlag, Berlin, 1985.

